Sheldon Glashow The Nobel Prize in Physics 1979

autobiography

Physics, like other sciences, aspires to find common causes for apparently unrelated natural or experimental observations. A classical example is the force of gravitation introduced by Newton to explain such disparate phenomena as the apple falling to the ground and the moon moving around the earth. Another example occurred in the 19th century when it was realized, mainly through the work of Oersted in Denmark and Faraday in England, that electricity and magnetism are closely related, and are really different aspects of the electromagnetic force or interaction between charges. The final synthesis was presented in the 1860's by Maxwell in England. His work predicted the existence of electromagnetic waves and interpreted light as an electromagnetic wave phenomenon.

The discovery of the radioactivity of certain heavy elements towards the end of last century, and the ensuing development of the physics of the atomic nucleus, led to the introduction of two new forces or interactions: the strong and the weak nuclear forces. Unlike gravitation and electromagnetism these forces act only at very short distances, of the order of nuclear diameters or less. While the strong interaction keeps protons and neutrons together in the nucleus, the weak interaction causes the so-called radioactive beta-decay. The typical process is the decay of the neutron: the neutron, with charge zero, is transformed into a positively charged proton, with the emission of a negatively charged electron and a neutral, massless particle, the neutrino. Although the weak interaction is much weaker than both the strong and the electromagnetic interactions, it is of great importance in many connections. The actual strength of the weak interaction is also of significance. The energy of the sun, all-important for life on earth, is produced when hydrogen fuses or burns into helium in a chain of nuclear reactions occurring in the interior of the sun. The first reaction in this chain, the transformation of hydrogen into heavy hydrogen (deuterium), is caused by the weak force. Without this force solar energy production would not be possible. Again, had the weak force been much stronger, the life span of the sun would have been too short for life to have had time to evolve on any planet. The weak interaction finds practical application in the radioactive elements used in medicine and technology, which are in general beta-radioactive, and in the beta-decay of a carbon isotope into nitrogen, which is the basis for the carbon-14 method for dating of organic archaeological remains.


Theories of weak interaction

A first theory or weak interaction was put forward already in 1934 by the Italian physicist Fermi. However, a satisfactory description of the weak interaction between particles at low energy could be given only after the discovery in 1956 that the weak force differs from the other forces in not being reflection symmetric; in other words, the weak force makes a distinction between left and right. Although this theory was valid only for low energies and thus had a restricted domain of validity, it suggested a certain kinship between the week and the electromagnetic interactions. In a series of separate works in the 1960's this year's Nobel Prize winners, Glashow, Salam and Weinberg developed a theory which is applicable also at higher energies, and which at the same time unifies the weak and electromagnetic interactions in a common formalism. Glashow. Salam and Weinberg started ,from earlier contributions by other. scientists. Of special importance was a generalization of the so-called gauge principle for the description of the electromagnetic interaction. This generalization was worked out around the middle of the 1950's by Yang and Mills in USA. After the fundamental work in the 1960's the theory has been further developed. An important contribution was made in 1971 by the young Dutch physicist van't Hooft. The theory predicts among other things the existence of a new type of weak interaction, in which the reacting particles do not change their charges. This behaviour is similar to what happens in the electromagnetic interaction, and one says that the interaction proceeds via a neutral current. One should contrast this with the beta-decay of the neutron, where the charge is altered when the neutron is changed into a proton.


First observation of the weak neutral current

The first observation of an effect of the new type of weak interaction was made in 1973 at the European nuclear research laboratory, CERN, in Geneva in an experiment where nuclei were bombarded with a beam of neutrinos. Since then a series of neutrino experiments at CERN and at the Fermi Laboratory near Chicago have given results in good agreement with theory. Other laboratories have also made successful tests of effects of the weak neutral current interaction. Of special interest is a result, published in the summer of 1978, of an experiment at the electron accelerator at SLAC in Stanford, USA. In this experiment the scattering of high energy electrons on deuterium nuclei was studied and an effect due to a direct interplay between the electronmagnetic and weak parts of the unified interaction could be observed.


Interaction carried by particles

An important consequence of the theory is that the weak interaction is carried by particles having some properties in common - with the photon, which carries the electromagnetic interaction between charged particles. These so-called weak vector bosons differ from the massless photon primarily by having a large mass; this corresponds to the short range of the weak interaction. The theory predicts masses of the order of one hundred proton masses, but today's particle accelerators are not powerful enough to be able to produce these particles.

My parents, Lewis Glashow and Bella n?e Rubin immigrated to New York City from Bobruisk in the early years of this century. Here they found the freedom and opportunity denied to Jews in Czarist Russia. After years of struggle, my father became a successful plumber, and his family could then enjoy the comforts of the middle class. While my parents never had the time or money to secure university education themselves, they were adamant that their children should. In comfort and in love, we were taught the joys of knowledge and of work well done. I only regret that neither my mother nor my father could live to see the day I would accept the Nobel Prize. When I was born in Manhattan in 1932, my brothers Samuel and Jules were eighteen and fourteen years old. They chose careers of dentistry and medicine, to my parents' satisfaction. From an early age, I knew I would become a scientist. It may have been my brother Sam's doing. He interested me in the laws of falling bodies when I was ten, and helped my father equip a basement chemistry lab for me when I was fifteen. I became skilled in the synthesis of selenium halides. Never again would I do such dangerous research. Except for the occasional suggestion that I should become a physician and do science in my spare time, my parents always encouraged my scientific inclinations.

Among my chums at the Bronx High School of Science were Gary Feinberg and Steven Weinberg. We spurred one another to learn physics while commuting on the New York subway. Another classmate, Dan Greenberger, taught me calculus in the school lunchroom. High-school mathematics then terminated with solid geometry. At Cornell University, I again had the good fortune to join a talented class. It included the mathematician Daniel Kleitman who was to become my brother-in-law, my old classmate Steven Weinberg, and many others who were to become prominent scientists. Throughout my formal education, I would learn as much from my peers as from my teachers. So it is today among our graduate students.

I came to graduate school at Harvard University in 1954. My thesis supervisor, Julian Schwinger, had about a dozen doctoral students at a time. Getting his ear was as difficult as it was rewarding. I called my thesis "The Vector Meson in Elementary Particle Decays", and it showed an early commitment to an electroweak synthesis. When I completed my work in 1958, Schwinger and I were to write a paper summarizing our thoughts on weak-electromagnetic unification. Alas, one of us lost the first draft of the manuscript, and that was that.

I won an NSF postdoctoral fellowship, and planned to work at the Lebedev Institute in Moscow with I. Tamm, who enthusiastically supported my proposal. I spent the tenure of my fellowship in Copenhagen at the Niels Bohr Institute (and, partly, at CERN), waiting for the Russian visa that was never to come. Perhaps all was for the best, because it was in these years (1958-60) that I discovered the SU(2) x U(1) structure of the electroweak theory. Interestingly, it was also in Copenhagen that my early work on charm with Bjorken was done. This was during a brief return to Denmark in 1964. During my stay in Europe, I was "discovered" by Murray Gell-Mann. He presented my ideas on the algebraic structure of weak interactions to the 1960 "Rochester meeting" and brought me to Caltech. Then, he invented the eightfold way, which kept Sidney Coleman and me distracted for several years. How we found various electromagnetic formulae, yet missed the discovery of the Gell-Mann-Okubo formula and of the Cabibbo current is another story.

I became an assistant professor at Stanford University and then spent several years on the faculty of the University of California at Berkeley. During this time, I continued to exploit the phenomenological successes of flavor SU(3) and attempted to understand the departures from exact symmetry as a consequence of spontane23ous symmetry breakdown. I returned to Harvard University in 1966 where I have remained except for leaves to CERN, MIT, and the University of Marseilles. Today, I am Eugene Higgins Professor of Physics at Harvard.

In 1969, John Iliopoulos and Luciano Maiani came to Harvard as research fellows. Together, we found the arguments that predicted the existence of charmed hadrons. Much of my later work was done in collaboration with Alvaro de Ruj?la or Howard Georgi. In early 1974, we predicted that charm would be discovered in neutrino physics or in e+ e- annihilation. So it was. With the discovery of the J/Psi particle, we realized that many diverse strands of research were converging on a single theory of physics. I remember once saying to Howard that if QCD is so good, it should explain the Sigma-Lambda mass splitting. The next day he showed that it did. When we spoke, in 1974, of the unification of all elementary particle forces within a simple gauge group, and of the predicted instability of the proton, we were regarded as mad. How things change! The wild ideas of yesterday quickly become today's dogma. This year I have been honored to participate in the inauguration of the Harvard Core Curriculum Program. My students are not, and will never be, scientists. Nonetheless, in my course "From Alchemy to Quarks" they seem to be as fascinated as I am by the strange story of the search for the ultimate constituents of matter. I was married in 1972 to the former Joan Alexander. We live in a large old house with our four children, who attend the Brookline public schools.

free web hits counter
free web hits counter

Genry/Male/21-25. Lives in United States/IL/Chicago, speaks English and Italian. Eye color is brown. I am muscular. I am also passive. My interests are bodybulding/swiming.
This is my BrainyGoose:
United States, IL, Chicago, English, Italian, Genry, Male, 21-25, bodybulding, swiming.

otisk str?nky sponsors link